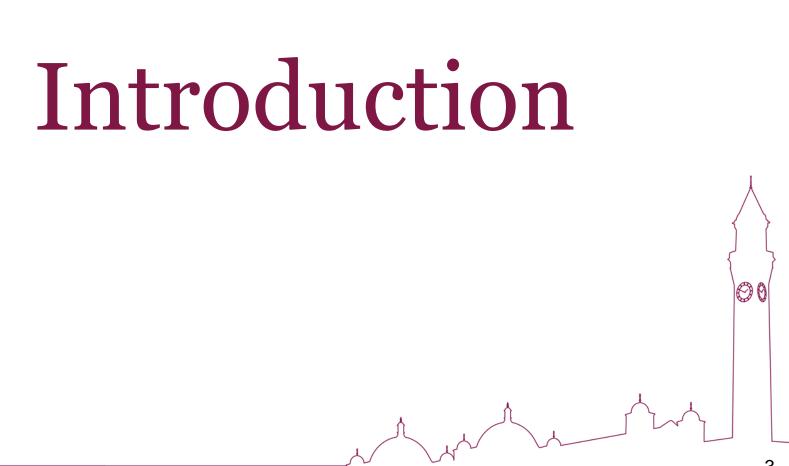


COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES

Maintenance Programmes to Manage High-Risk Roads

By Azwan Ezzany Azmi

Supported by:


Outline of Presentation

Introduction
Objective of study
Methodology
Case Study
Result & Discussion
Conclusion

COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES

Road Maintenance

Purpose of road maintenance

- Reducing deterioration
- Lowering vehicle operating cost (VOC)
- Keeping the road open
- Safety
- Environment issues
- Road maintenance programmes are normally based on pavement condition (roughness, cracking, skid resistance etc.)

COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES

Why we need to measure safety...

How many accident may occur on this road?Any fatality? Any serious injury?

Road Safety Assessment

International Road Assessment Programme (iRAP)

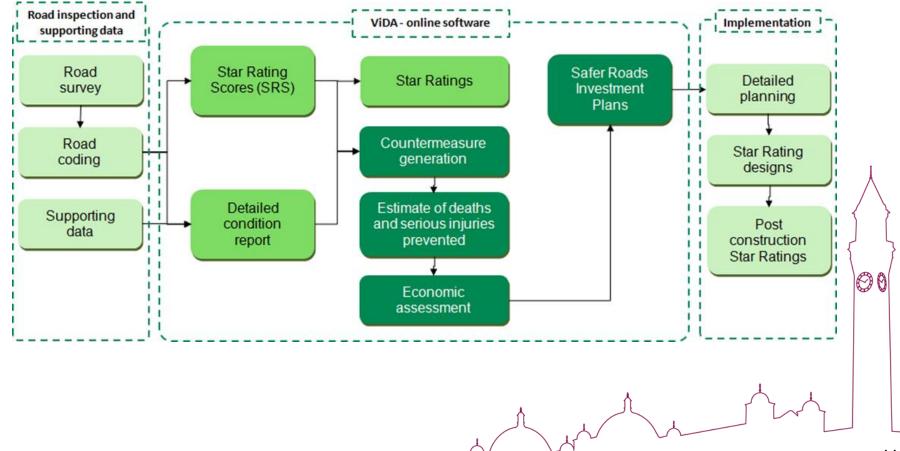
- Assessment of accident risks based on road attributes
- Provide economic analysis of Safer
 Road Investment Plan
- Track road safety performance

96

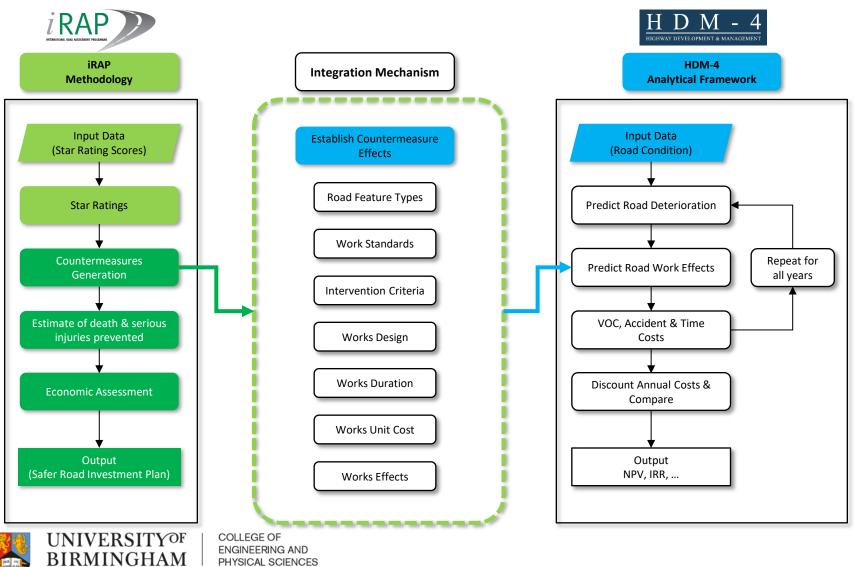
Objectives of Study

Ø

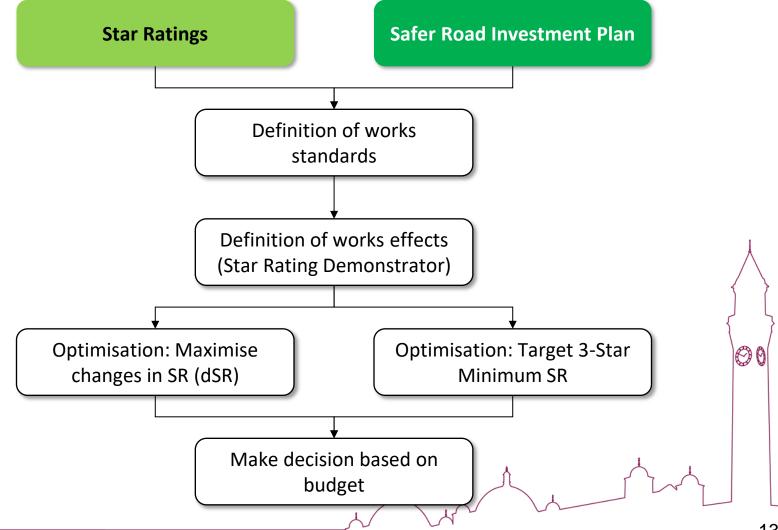
Objectives of this study


- □ to propose a **road maintenance planning framework** based on **road safety scores**
- to demonstrate the possibility of integrating road maintenance and road safety programme in order to tackle both maintenance and road safety issues with optimum budget

Why integrate Road Safety and Road Maintenance...


- Need to measure safety impact of road maintenance programme
- Need to measure effectiveness of road maintenance activities
- Optimise road operation fund that tackles maintenance and safety issues

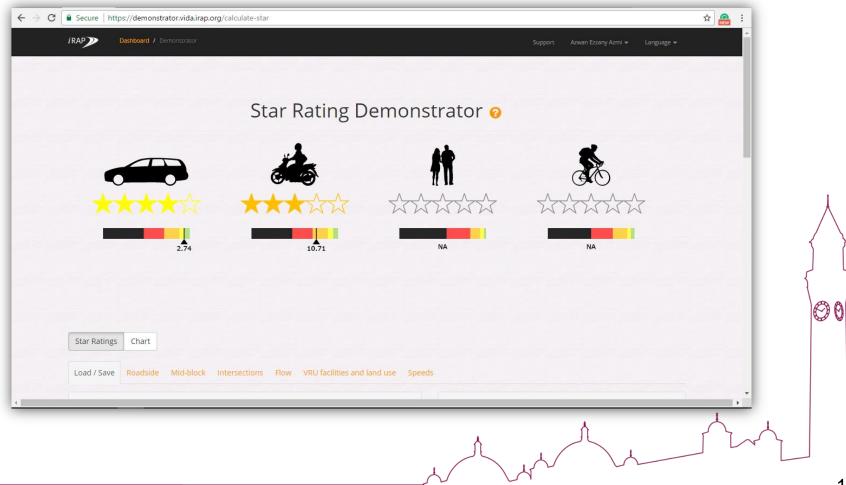
iRAP Methodology



Proposed Integration Mechanism

PHYSICAL SCIENCES

Research Methodology



Work Standards

Star Rating		Work Effects (Countermeasure Effects)									
****	↑		1			1					\$
****		↑			1				1		
***				↑		6			•		
**			•		•		↑	•			
*	•	J		•			•				
Work Standard	D1	U1	U2	P1	P2	P3	R1	R2	R3	R4	R5
Work Category	Development	Upgrading 1	Upgrading 2	Periodic 1	Periodic 2	Periodic 3	Routine 1	Routine 2	Routine 3	Routine 4	Routine 5

Work Effects

https://demonstrator.vida.irap.org/calculate-star

Case Study: Malaysia

2016 statistics

- □ Population : 31,660,000
- □ Reg. veh. : 27,613,120
- □ Accidents : 521,466
- □ Death : 7,152

UNIVERSITYOF

IRMINGHAM

- □ Index per 10,000 Vehicles : 2.59
- □ Index per 100,000 Population : 22.6

Budapest, Hungary

9,912 km

Kuala Lumpur, Malaysia

iRAP Pilot Project (2007)

Star Rating	Length (km)	Percentage
****	1	0.03%
****	1163	31.53%
***	953	25.84%
**	1127	30.56%
*	444	12.04%
Total	3688	100%

COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES

iRAP Pilot Project (2007)

Dente Northen / Deed North	T ee -	Approximate	% -	Star Rating (km)						
Route Number / Road Name	Traffic	Length (km)	%0	*	**	***	****	****		
E1 Kuala Lumpur – Bukit Kayu Hitam	40000	495	13.42			80	415			
E2 Johor Bahru – Kuala Lumpur	35000	335	9.08			62	273			
E8 Karak - Kuantan	30000	236	6.40	5		5	225	1		
Total Traffic T1	105000	1066	28.90	5	0	147	913	1		
F1 Alor Setar – Kuala Lumpur	15000	459	12.45	30	270	110	49			
F3 Rantau Panjang – Johor Bahru	15000	725	19.66	59	324	292	50			
F2 Gebeng - Karak	10000	208	5.64	60	70	60	18			
F5 Johor Bahru - Ipoh	10000	680	18.44	70	270	240	100			
F7 Padang Besar – Alor Setar	10000	78	2.11	15	58	5				
Total Traffic T2	60000	2150	58.30	234	992	707	217	0		
F4 Gerik – Kota Bahru	7000	200	5.42	100	70	30				
F8 Bentong – Sungai Temau	7000	163	4.42	50	20	60	33			
F67 Sungai Petani - Baling	3000	55	1.49	30	20	5				
F76 Baling - Gerik	3000	54	1.46	25	25	4				
Total Traffic T3	20000	472	12.80	205	135	99	33	0		
TOTAL		3688	100.00	444	1127	953	1163	1		

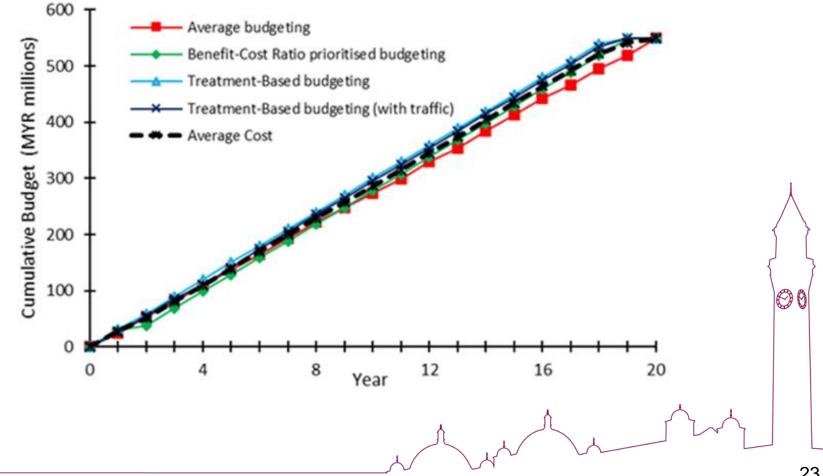
UNIVERSITY OF BIRMINGHAM

Safer Road Investment Plan (iRAP)

*Star Rating Investment Plan (SRIP) (Countermeasure Types)	*Length or number of sites	*Estimated Cost to Build and Maintain (20 years) MYR 'mil	*Benefit- Cost Ratio	Work Standards	Work Effects
Roadside safety - hazard removal	1650 km	24	121	Routine	R1/R2/R3/R4/
					R5
Realignment – horizontal	3 km	1	117	Upgrading	U1
Intersection – roundabout	20 sites	0.3	39	Periodic	P1
Central hatching	10 km	0.4	36	Periodic	P1
Intersection - right turn provision	60 sites	4	16	Periodic	P3
(signalised site)					
Additional lane	380 km	179	14	Development	D1
Intersection - right turn provision	120 sites	14	14	Periodic	P1
(unsignalised site)					
Intersection – signalise	190 sites	25	13	Upgrading	U1
Shoulder widening	270 km	34	12	Periodic	P1
Median barrier	40 km	20	12	Upgrading	U1
Improve delineation	130 km	11	12	Periodic	P1
Road surface upgrade	10 km	0.8	11	Periodic	P3
Duplication (additional lanes)	120 km	220	10	Development	D1
Roadside safety – barriers	30 km	9	10	Periodic	P1
Lane widening	30 km	6	9	Periodic	P1
Rumble strip / flexi-post	10 km	0.5	7	Periodic	P2
Regulate roadside commercial activity	0.2 km	0.03	7	Periodic	P2
Parking improvements	0.1 km	0.02	7	Periodic	P2
TOTAL		549.05 **(581.08)	16		

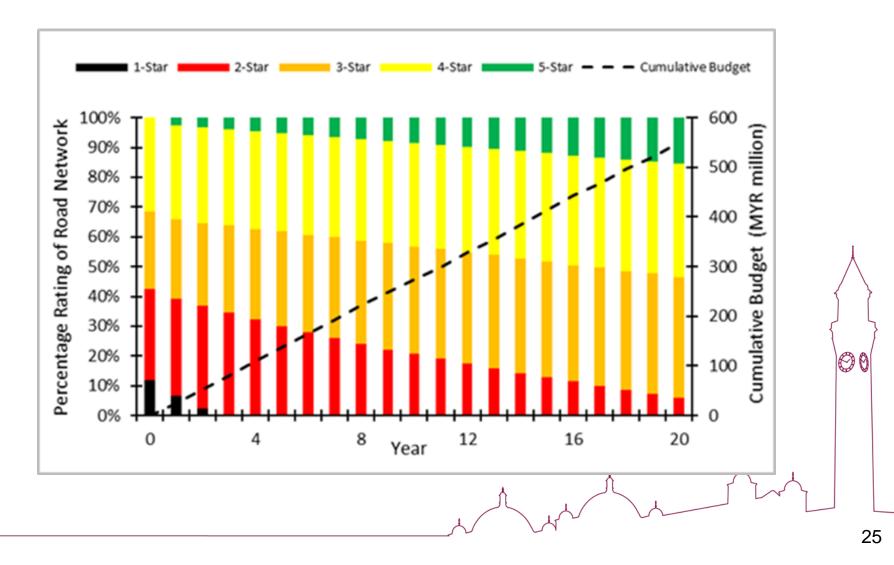
4 Budget Strategies

- Average budgeting: countermeasures are spread out within 20-years
- Benefit-Cost Ratio prioritised budgeting: Countermeasures are allocated based on benefit-cost ratio prioritisation within 20-years
- Treatment-Based budgeting: Countermeasures is allocated based on treatment-based prioritisation within 20-years
- Treatment-Based budgeting (with traffic): Countermeasures are allocated based on treatmentbased prioritisation and traffic characteristic within 20years

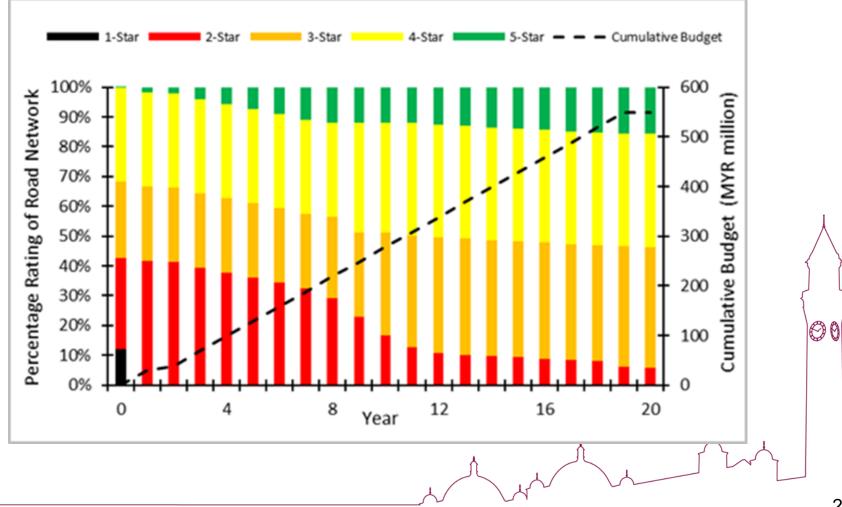

 $\bigcirc 0$

Treatment-Based budgeting

Hierarchy of Maintenance	Work Effects (Star Rating)					Works Category	Traffic Hierarchy			
Works	1	2	3	4	5	WORKS Category	T1	T2	T3	
P1	•					Periodic	1	2	3	
R2		-				Routine / Cyclic	4	5	6	
R1		-				Routine / Cyclic	7	8	9	
P2		-				Periodic	10	11	12	
U1	•					Upgrading	13	14	15	
U2		-				Upgrading	16	17	18	
D1	╺					Development	19	20	21	
R3			-			Routine / Cyclic	22	26	30	
P3			-			Periodic	23	27	31	
R4				<u> </u>		Routine / Cyclic	24	28	32	
R5						Routine / Cyclic	25	29	¥ 33	

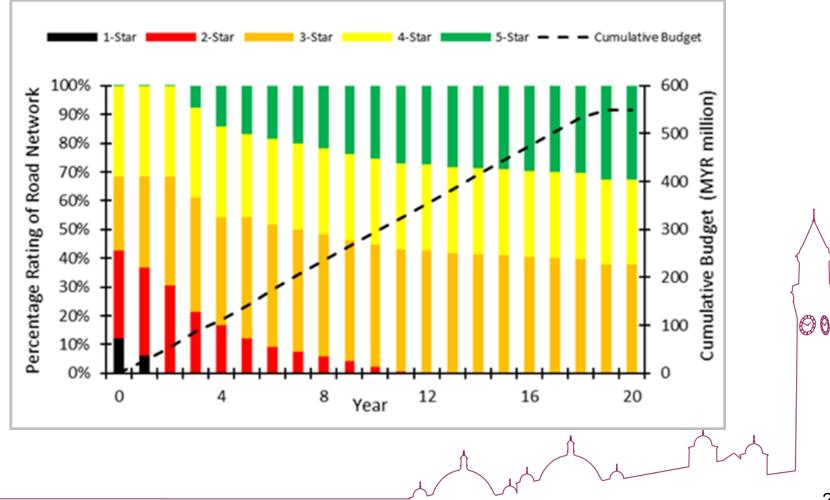


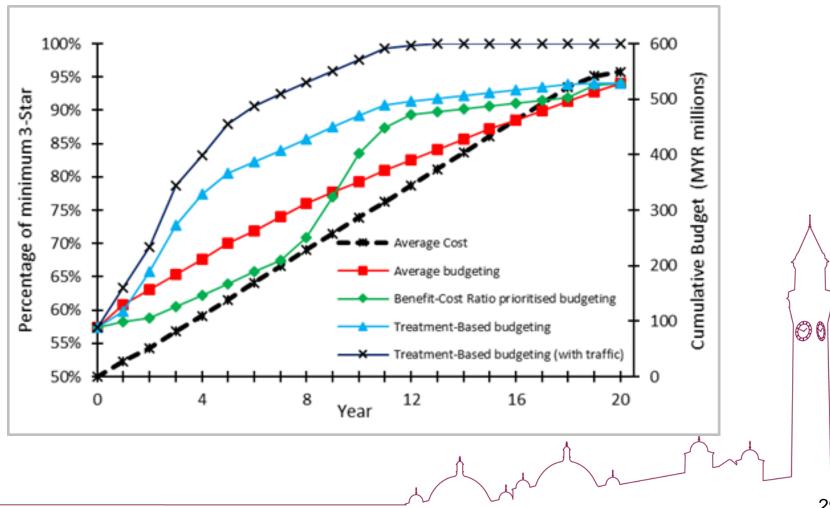
Distribution of Budget Within 20years analysis period



Result & Discussion

Average budgeting


Benefit-Cost Ratio prioritised budgeting


Treatment-Based budgeting

Treatment-Based budgeting (with traffic)

Changes to minimum 3-Star roads

Conclusion

- This study has successfully demonstrated the methodology on how to identify the average road safety condition with regards to different budget strategy and budget constraint
- Traffic hierarchy may reflects the effects of strategies
- This study is not intended to identify the best strategy to implement road safety programme

ØC

Future Works

- To include other occupants (motorcycle, bicycle and pedestrian)
- To investigate the Work Effects or Countermeasure Effects for all 94 type of countermeasures (effectiveness)
- To develop this model into a second generation and third generation decision support tool by looking into life-cycle of the asset and more advance economic analysis

 $\bigcirc 0$

Contact: Azwan Ezzany Azmi aea199@student.bham.ac.uk azwanea.jkr@1govuc.gov.my