One of the biggest challenges today # LIFE Sustain EuroRoad an environmentally conscious project with COLAS PUCHARD, Zoltán – ROSZIK, Gábor – VINCZÉNÉ GÖRGÉNYI, Ágnes Colas Hungária Zrt. #### **LIFE** – L'Instrument Financier pour l'Environnement LIFE is the **EU's funding instrument for the environment and climate action**. its objective is to contribute to the implementation, updating and development of EU environmental and climate policy and legislation by co-financing projects with European added value. #### LIFE 2014-2020 Total budget: Funding rate: 2 sub-programmes: € 3,456 billion 60% of eligible costs* Environment & Climate action #### **Deadlines & budget of the LIFE 2017 call** Climate Change Action: 07/09/17 Environment & Resource Efficiency: 12/09/17 Budget for 2017: € 373 million ^{*} Maximum funding rate except for capacity building project #### **LIFE** – Budget 2014-2020 ## LIFE Programme 2014-2020 (3,456,655,000 € in constant costs) Sub-programme for ENVIRONMENT (2,592,491,250 € // 75% of LIFE budget) Sub-programme for CLIMATE ACTION (864,163,750 € // 25% of LIFE budget) NATURE & SIODIVERSITY 2014-2017 Period 610,070,000 € ENVIRONNEMENT & RESOURCE EFFICIENCY 2014-2017 Period 495,850,000 € INFORMATION & GOVERNANCE 2014-2017 Period 163,000,000 € CLIMATE CHANGE MITIGATION 2014-2017 Period 193,560,000 € CLIMATE CHANGE ADAPTATION 2014-2017 Period 190,390,000 € INFORMATION 8 2014-2017 Period 47,590,000 € confidential | © WAVESTONE ### To put SustainEuroRoad in a nutshell - WHAT ARE WE DOING WITH THIS SustainEuroRoad LIFE+ Project AND WHERE ARE W GOING WITH IT? - Firstly, development of SEVE software in each partner country: - Hungarian version of SEVE is on work with a specific database thanks to feedback from demonstrators (in worksites and in asphalt plants) - ✓ Evolution of the thermal model in the asphalt plants for Hungary - How much energy does 1 ton of asphalt concrete in Hungary cost ? - What parameters enter into account ? (Temperature, %RAP, %water content, electrical part working consumption...) - ✓ Change in the energy mix (environmental cost of 1kWh in France ≠ 1kWh in Hungary) - In the end, only one European version SustainEuroRoad: - With different languages - standardization of European database - SustainEuroRoad should be led & implemented by European Road Federation ## **Participants of the Project** • USIRF: Union of **French Road Industry Association** FINLAND **RUSSIA** • ASEFMA: Spanish Road **Industry Association** BELORUSSI **POLAND** GERMANY UKRAINE **COLAS Hungary** FRANCE ROMANIA **EUROVIA Germany** BULGARIA TURKEY SPAIN 00 ERF: European Road IRAO COLAS **Federation** ## **Project objectives (1/2)** LIFE SustainEuroRoad project offers to create and validate an innovative software to drastically reduce the environmental impact of road construction and maintenance in Europe. ### 2 main targets - Reduction of the energy consumption, including fossil fuel and natural resources - Reduction of GHG emissions linked to road building and maintaining processes and to the preservation of natural resources ## **Project objectives (2/2)** - In order to validate these ambitious targets, the software will be tested in several demonstration sites, in 4 countries: - Hungary, France, Spain and Germany - With different technical requirements - And different meteorological conditions ## **Advantages of the project** - The project will provide a <u>unique tool</u> to decrease the road industry environmental impact by keeping the same technical performance or improving it. - Local authorities will be able to evaluate the environmental impact between different solutions in the part of adjudication. - This project will enable the increase of public funds in the environmental issue. - By limiting the impact of industrial activities on climate change, the project will enable to help European and national authorities to reinforce the legislation and challenge enterprises in the environmental aspect. - The knowledge acquired will be widely disseminated to project stakeholders and general public. ## **Expected results** - To increase the integration of environmental assessment in the selection of road project - To incite road sector to generalize BAT (Best Available Technique) regarding economical, social and environmental aspects - To deliver a computerized decision tool harmonized at the European level to calculate the environmental impact of road construction and maintenance. - The indicators of the software will be: - GHG emission (ton eq. CO2) - Energy consumption (MJ) Life Cycle - Consumption of natural aggregates (ton) Throughout Road # **Amended budget of Colas** | | | COLAS | | | | | | | | |------------------------------|--------------|----------------|------------------------|-------------|------------------------|-----|------------------------------|------|------------| | Budget breakdown categories | Total cost | Initial budget | Costs until
04/2016 | % | Costs until
12/2016 | % | Foreseen Costs until 05/2017 | % | New budget | | 1. Personnel | 443 350,00 | 21 600,00 | 18 739,50 | 87% | 19 640,90 | 91% | 21 600,00 | 100% | | | 2. Travel and subsistence | 79 620,00 | 13 920,00 | 1 399,31 | 10% | 1 901,08 | 14% | 3 500,00 | 25% | | | 3. External assistance | 617 000,00 | - | - | _ | | - | | - | | | 4. Durable goods | - | - | - | _ | - | - | - | - | - | | 4. Depreciated Durable goods | - | - | - | _ | | - | - | - | - | | Infrastructure | - | _ | - | _ | | - | | - | | | Depreciated Infrastructure | - | - | - | _ | | - | | - | | | Equipment | - | - | - | _ | | - | | - | | | Depreciated Equipment | - | - | - | - | | - | | - | | | Prototype | - | - | - | - | | - | | - | | | 5. Land purchase / LT lease | - | - | - | _ | | - | | - | | | 6. Consumables | 34 000,00 | - | _ | - | | - | | - | | | 7. Other Costs | 52 180,00 | - | - | _ | | - | | - | | | 8. Overheads | 85 830,00 | 2 486,00 | 1 409,00 | 57% | 1 507,00 | 61% | 1 757,00 | 71% | _ | | TOTAL | 1 311 980,00 | 38 006,00 | 21 547,80 | 57% | 23 048,98 | 61% | 26 857,00 | 71% | - | | TOTAL ELIGIBLE | 1 311 980,00 | 38 006,00 | 21 547,80 | 57 % | 23 048,98 | 61% | 26 857,00 | 71% | _ | # The tool for the project #### EVALUATION SYSTEM OF ENVIRONMENTAL VARIANTS | the technical advice n°160 for SEVE in april 2013 India/De Rolles, De Rouge advices double by lightly the Rolles, De Rouge advices and the Rolles, De Rouge advices and the Rolles Roll | * Name: First name: | |--|---| | SEVE was verified by Bio IS: Document of check Dio Intelligence Service | * Company: Country: Hungary * E-mail: * Phone number: | | You wish a fast description of this software: | Comment: * I accept the terms of use SEVE Download the terms of use | | You wish a detailed description of SEVE:
<u>Detailed presentation of SEVE</u> | All fields * are mandatory Request for registration | | You wish to consult the USER GUIDE: <u>User guide</u> SEVE | | Confidentiality ## **How it works** - Product analysis - Activity analysis - Energy assessment - GHG assessment - Ecological footprint # The advantage of the software ### 5 indicators - Possibility for companies to integrate "specific" products - Easy to use according to subscribers' feedback - Possibility for contractors to check the results ## **Example of an assesment** Traffic: 30,000,000 Equal Axle Load **Embankment: (E2 ≥ 80 MPa)** Width of the pavement: 2 x 11,25 m Length of the pavement: 7km #### The basic solution: - wearing course: 4 cm SMA 11 25/55-65: Polymer Modified Bitumen (6%SBS) - binding course: 8 cm AC 22 binding (mF) 25/55-65: PmB (5%SBS) - base course: 8 cm AC 22 binding (mF) 25/55-65: PmB (5%SBS) - sub-base layer: 20 cm C12/15 concrete: 7% of cement #### The variant solution: - wearing course: 4 cm SMA 11 25/55-65: PmB (6%SBS) - binding course: 8 cm AC 22 binding: Pure Bitumen - base course: 8 cm AC 22 binding: Pure Bitumen - sub-base layer: 23 cm Cement stabilized gravel base course: 4% of cement ## **Energy assesment** #### Consumption compared of energy process #### (in MJ) | Solution | Materials | Upstream
transportation | Manufacturing
mixtures | Haul to construction site | Lay down | Total | Comparison
/ Base | |---------------------|---------------|----------------------------|---------------------------|---------------------------|--------------|----------------|----------------------| | Basic
Solution | 66 308 019,59 | 24 967 665,40 | 22 537 347,37 | 1 046 817,14 | 1 895 768,50 | 116 755 618,00 | 0.00 % | | Variant
Solution | 44 748 476,89 | 26 037 893,36 | 22 004 377,33 | 1 102 892,84 | 2 477 836,40 | 96 371 476,81 | -17.46 % | ## **GHG** assesment #### **Emissions of Greenhouse Gases compared** (per ton of CO2 equivalent) | Solution | Materials | Upstream
transportation | Manufacturing
mixtures | Haul to construction site | Lay
down | Total | Comparison /
Base | |---------------------|-----------|----------------------------|---------------------------|---------------------------|-------------|-----------|----------------------| | Basic Solution | 6 738,98 | 2 009,57 | 1 301,49 | 84,26 | 143,09 | 10 277,39 | 0.00 % | | Variant
Solution | 4 064,58 | 2 095,71 | 1 256,64 | 88,77 | 187,85 | 7 693,55 | -25.14 % | ## **Actions and means involved** - Collect technical and environmental elements throughout the Europe - Implement key parameters from this collection in the software - Measured parameters (on plant and work sites) will be compared to estimations calculated in the software - A website providing information about project progress ## Translation of the expressions of SEVE # **Collecting Hungarian elements** **Energy consumption of asphalt mixplant:** **Energy consumption of equipments:** # Analysis of energy consumption of an asphalt mixplant 2014 | N do wat la | Asphalt production | RAP* | RAP* consumption | Energy consumption | Specific energy consumption | | |--------------------|--------------------|-----------------------|------------------|--------------------|-----------------------------|--------| | Month | (tons) | consumption
(tons) | (%) | (kWh) | (kWh/t) | (MJ/t) | | January | - | - | - | - | - | - | | February | - | - | - | - | - | - | | March | 1 017 | - | - | 22 217.52 | 82.54 | 297.14 | | April | 5 057 | 16 | 0.32 | 490 573.46 | 97.01 | 349,24 | | May | 5 439 | - | - | 514 847.40 | 94.67 | 340,81 | | June | 7 033 | 510 | 7.26 | 590 511.76 | 83.96 | 302,26 | | July | 11 748 | 704 | 5.99 | 930 257.50 | 79.18 | 285,05 | | August | 18 932 | 1 642 | 8.67 | 1 514 803.74 | 80.01 | 288,04 | | September | 15 175 | 1 535 | 10.11 | 1 276 218.62 | 84.07 | 302,65 | | October | 33 683 | 4 006 | 11.89 | 2 652 639.10 | 78.75 | 283,50 | | November | 27 072 | 3 053 | 11.28 | 2 146 729.06 | 79.30 | 285,48 | | December | 15 309 | 2 011 | 13.14 | 1 278 806.41 | 84.79 | 305,24 | | Total | 145 465 | 13 477 | 9.59 | 11 417 604.57 | 81.86 | 294,70 | ### Impact of temperature and rainfall on energy consumption # Elements of the energy consumption of the manufacturing | Elements | Type of energy | (% per asphalt
ton) | (tons CO2 eq. per asphalt ton) | |---------------------------|----------------|------------------------|--------------------------------| | Bitumen heating, holding | power | 4 | 0.0012 | | Aggregate drying, heating | Natural gas | 93 | 0.0087 | | Mixer operation | power | 3 | 0.0011 | | Total | - | 100 | 0,011 | # Total energy consumption and CO2 emission of an asphalt mixture per ton # On-field validation on road Nr. 31. (1/3) ## On-field validation on road Nr. 31. (2/3) zabadka Суботица - 4 cm AC 11 (mF)wearing course - 9 cm AC 22 (mF) binding course - 20 cm cold recycling on the exhausted pavement. COLAS Velika Gonca Pecs # On-field validation on road Nr. 31. (3/3) | DAY | TERM | |---|-------------------| | DATE | 2015.07.01-07.31 | | | | | Kind of milling machine (brand) | WIRTGEN WR 210 | | Milling machine consumption (I de FOD) | 2850 | | Milling machine duration use (h) | 38 | | Garage distance (km) | 0 | | Kind of transport for the delivery of the milling machine | - | | Kind of truck used to keep as phalt concrete (semi-truck 24t, | _ | | 30t) | | | Truck consumption (I) | - | | Distance from garage to site for the truck (km) | - | | Distance from site to the storage plateform | - | | Kind of materials removed | exhausted pavemen | | Surface removed (m²) | 15746 | | Quantity removed (m ³) | 3093 | | Distance from quarry (km) | 65 | | | | | replacement aggregates t/m2 | 0,115 | | Kind of truck to deliver the replacement aggregates (semi-truck 24t, 30t) | 40 t | | Truck consumption (I) | 2223 | # Elements of the energy consumption of the remixing on the exhausted pavement | Technology steps | (MJ/m²) | (tons CO2 eq./m²) | |--|---------|-------------------| | transportation of additive from pit in a distance of 65 km and laying it on the surface for remixing | 0,6 | 0.0185 | | remixing existing pavement by remixer | 9,5 | 0.2926 | | surface compaction | 2,2 | 0.0670 | | Total | 12,3 | 0.3781 | ## Dissemination ## **Proposal** #### THE LCA OF A CONSTRUCTION PRODUCT ## Other viewpoints Health and safety and environment Power generation ## Conclusion ## Thank you for your attention !!! COLAS 2017.06.15.