zone

STATUS OF THE AUTONOMOUS VEHICLE TESTING ZONE PROJECT

Project presentation, October 18, 2017

Content

Status of the project

What steps led till today? Project overview Services and business model

What can be tested?

Functional overview Test track modules Services in detail

Model of operation

Business model principles Service portfolio Status of business development Principles of operation

Scientific and social environment

Platform concept Education and R&D initiatives Legal background Cross-boarder co-operation

Status of the project

Co-operating industrial partners in requirement definition Industry demand is fulfilled

Automotive Working Group, 2015:

Almotive, AVL, BME GJT, BOSCH, Commsignia, Knorr-Bremse, Continental, EVOPRO, NKH, NI, SZTAKI, ThyssenKrupp Presta, TÜV Rheinland, ZF

- Detailed **technical specification** of the classic elements of vehicle dynamics and physical structure of the automated vehicle tests
- Draft **specification of the autonomous environment** and related communication infrastructure
- Technical proposal for autonomous vehicle public road testing

ICT Working Group, 2017:

Status of the project

BME HIT, BME KJIT, BPC, Ericsson, HUAWEI, Kapsch, Magyar Közút, Magyar Telekom, NFM, NMHH, Nokia, Oracle, RWE, Siemens, SWARCO, T-Systems, Vodafone (compared to the new members of the automotive working group)

• Detailed specification of the autonomous vehicle environment and related **communication infrastructure**

Decision on Public Investment – Testing Zone

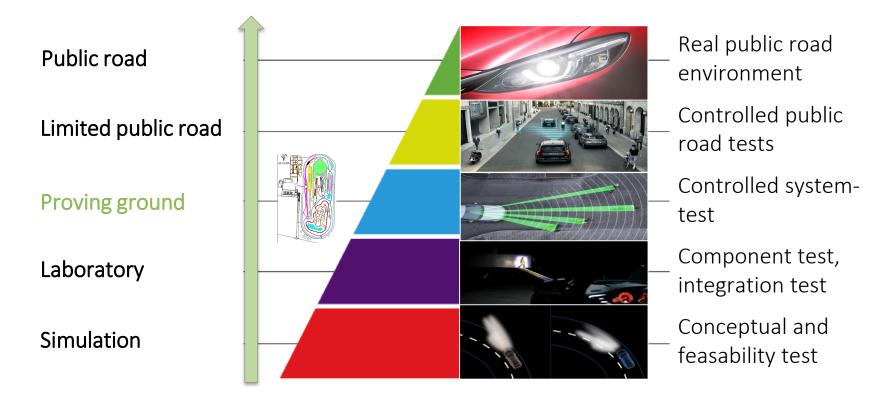
Government of Hungary is Committed to Innovative Industries

Capacity constraints in Europe in area of vehicle dynamic testing

Technology change in vehicle industry – single vehicle vs. co-operative vehicle control: different development environment is required

Decision of Hungarian Government in 2016: "contribution to the European automotive community"

Test field for classic and automated and connected vehicles in Hungary

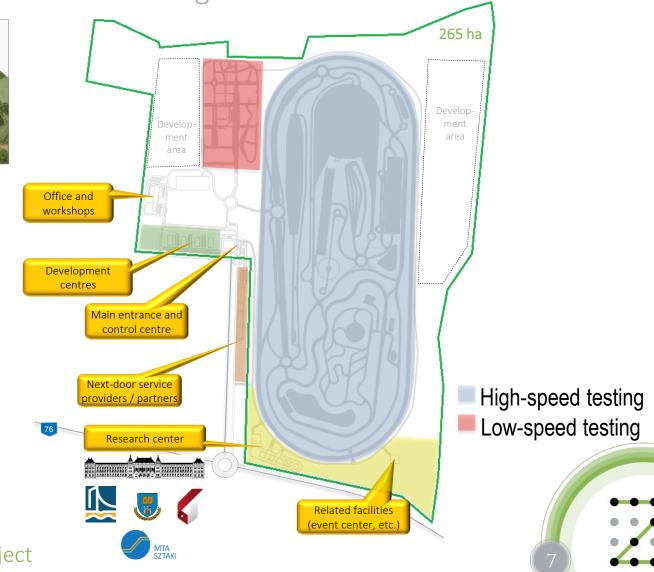


Multi-level testing environment

From computer to real traffic – essential for automated driving

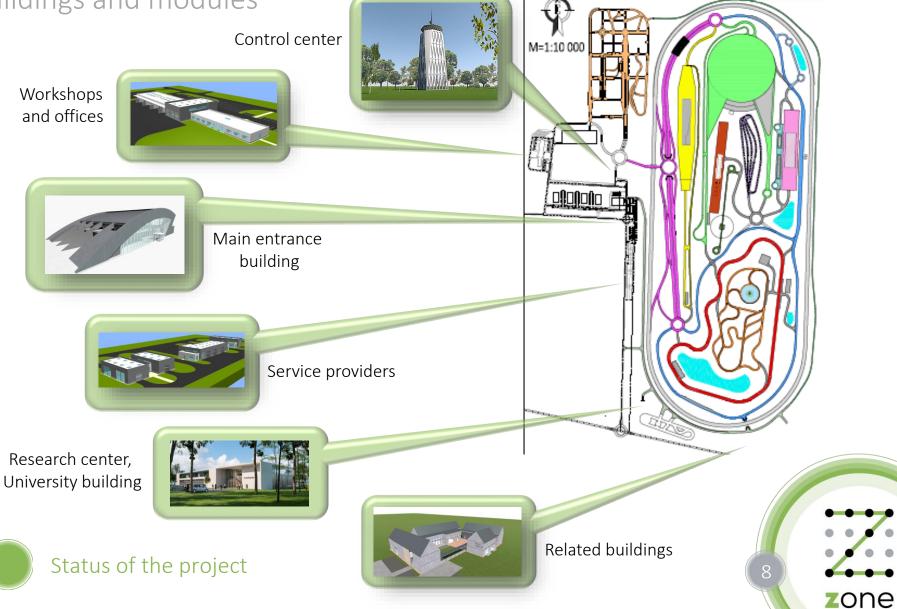
Overview of the Layout of the Unique Proving Ground

Traditional and autonomous testing modules

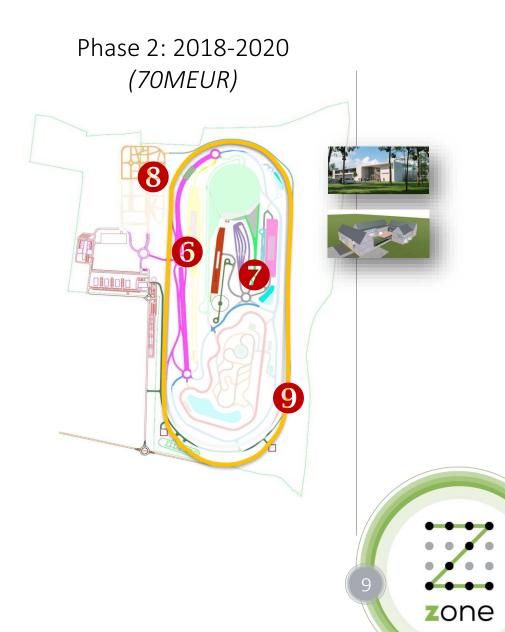


Concept is based on:

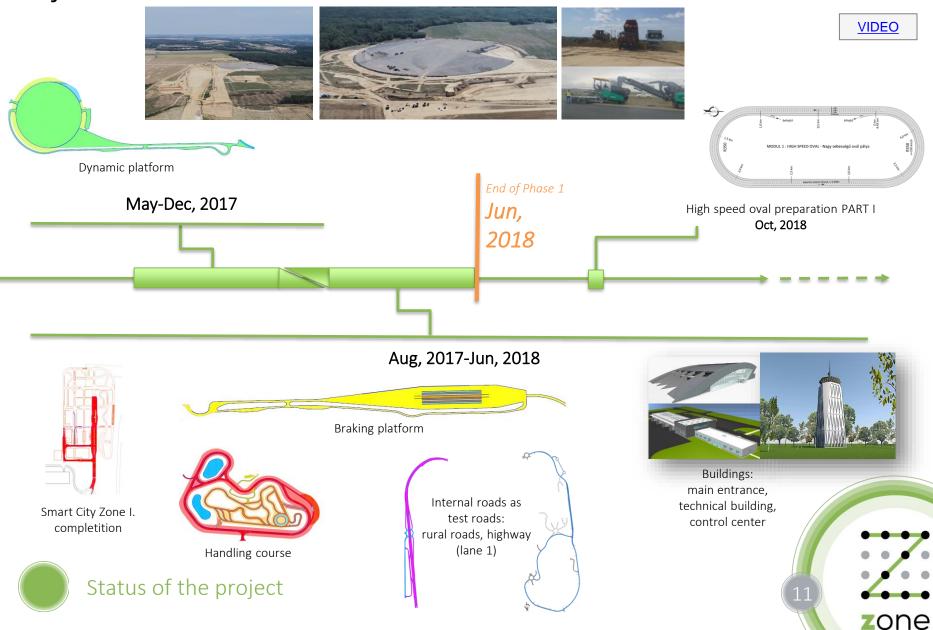
- Best practices from other similar facilities
- Business studies
- Environmental studies


Customer zone
 R&D campus
 Service zone

Multi-level testing environment



Definition of Project Phases



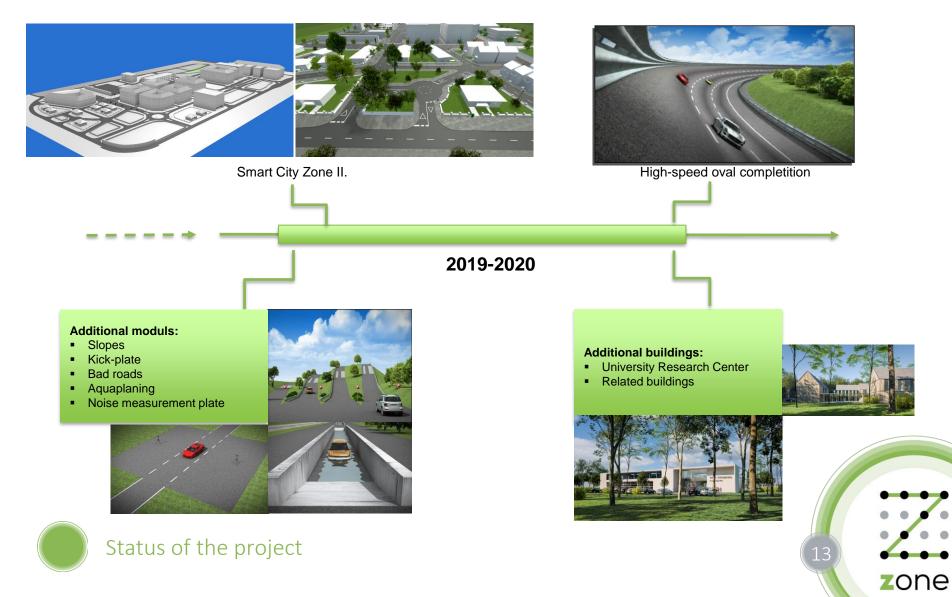
Project Milestones and Basic data Preparations

Project milestones and basic data

Project milestones and basic data

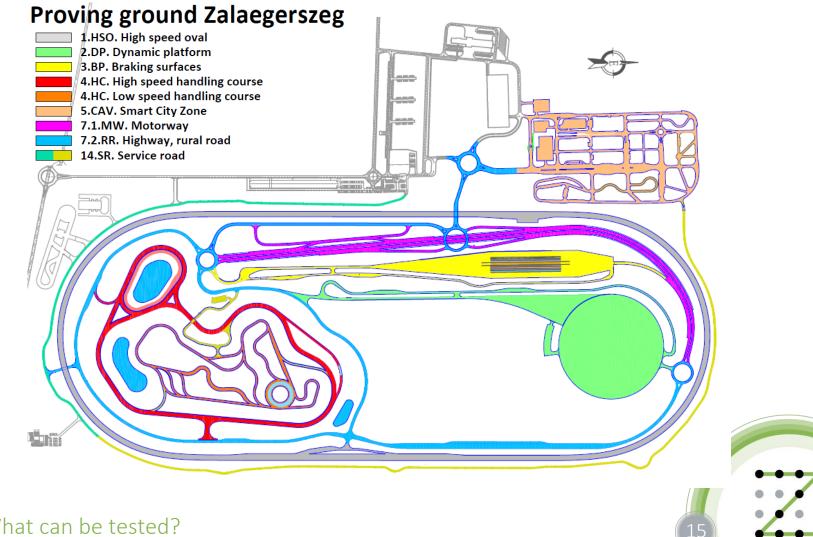
Actual status - runs according to project plan

ELEMENTS	CONTENT	PROGRESS
Basic construction works	 Dynamic platform Braking platform Handling course Smart City Zone Internal roads – Part 1 	
 Final construction works	- 4 modules completion - Public utilities - Internal roads – Part 2	
Buildings	- Main entrance building - Technical building	
Buildings	- Control center	
Technology	 -Test tracks technology - Watering technology I - AD technology: Scenario simulation equipment - AD technology: Sensor cluster I - AD technology: Data management basic system - Operation equipment 	►



Contracted

►► Tender running


▶ Tender preparation

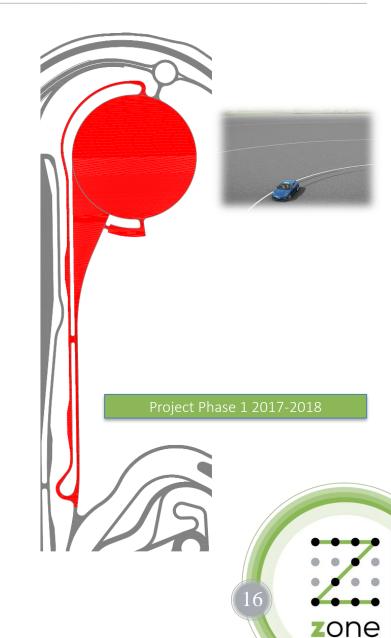
Project milestones and basic data PHASE 2

What can be tested?

Modules to be realized with Priority 1 Priority is defined with future customers

zone

What can be tested?

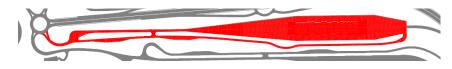

Proving Ground Modules Dynamic platform

Physical parameters:

- 300m diameter asphalt surface
- Acceleration lane 760m and 400m long
- 20m wide FIA emergency area
- Watered surface (optional)
- Watered basalt surface at easter acceleration lane (phase 2.)
- 1% inclination to south
- Separated return way

Autonomous vehicle test cases:

- Platooning at free trajectory
- Cooperative vehicle control at high and medium mue with different trajectories (double lane change, J-turn etc.) at stability limit (ABS, ESP activity)
- Fix position obstacle (dummy car or pedestrian)
- Euro NCAP scenarios


Proving Ground Modules Braking platform

Parameters:

- 6 different surfaces:
 - Chess surface: asphalt/tiles
 - asphalt mue=~1 (optional watering)
 - tiles mue=~0.1 (wet)
 - Blue basalt mue=~0.3 (wet)
 - Treated concrete mue=~0.6 (wet)
 - aquaplaning basin (max. 5cm wet depth)
- 200m surface length
- 750m acceleration lane
- 20m safety area at both side, 150m at the end

Autonomous vehicle test cases:

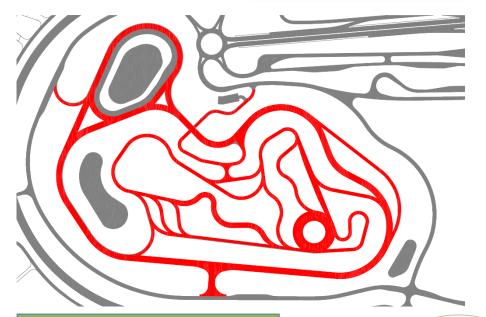
- Platooning at physical limits; drive through or braking at various surfaces up to high speed
- Cooperative vehicle control at physical limit, moving or static obstacle, at various speeds during ABS, ATC, ESP activity

Proving Ground Modules

Handling course

Parameters:

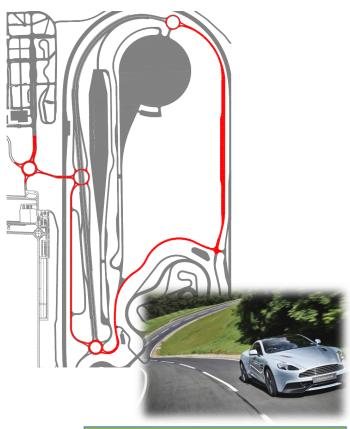
- Low (60km/h) and high speed (120km/h) section
- 1.300m and 2000m length
- width: 6 and 12m
- 20m wide gravel covered safety zones
- Various topography
- V2X coverage for communication tests at various terrain


Autonomous vehicle test cases:

- Platooning at medium speeds at diverse topography
- Cooperative vehicle control at diverse topography and limited visibility

zone

Proving Ground Modules


Rural road

Parameters:

- 500m 2x2 lane motorway
- 2500m 2x1 lane rural road
- Partly watered surface
- 5G test network
- V2X communication coverage
- GPS base station
- Public road like layout (junctions, road surface, geometry)

Autonomous vehicle test cases:

- Platooning on rural road at realistic conditions, various type of junctions, roundabouts
- Diverse lane layout: 2x1, 2x2, 2+1,
- Diverse topography
- Moving and static obstacles
- Construction site situation
- Various road side elements: trees, fences, grass etc.

Proving Ground MModules

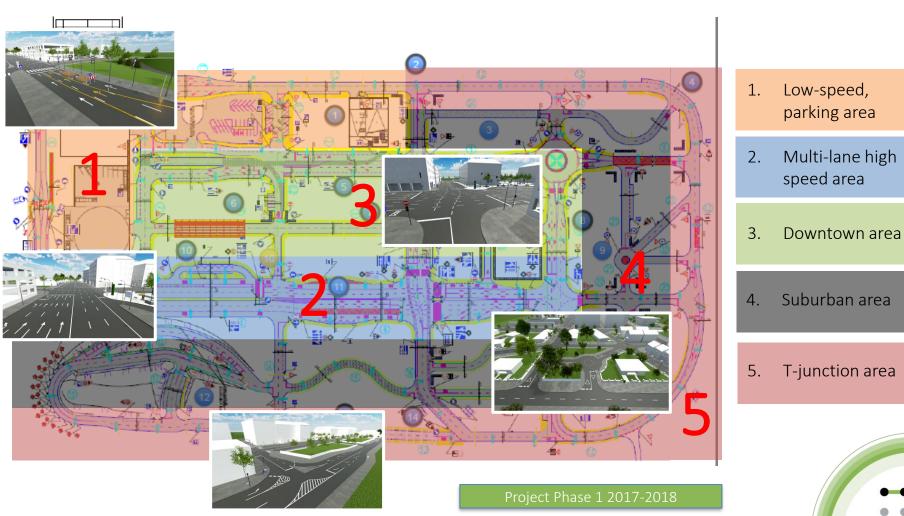
Motorway

Parameters:

- 1500m 2 x 2+1 lane motorway
- 100m real tunnel
- Partly watered surface
- VMS, 5G test network
- V2X communication coverage
- GPS base station
- Public road like layout (junctions, road surface, geometry)

Autonomous vehicle test cases:

- Platooning on motorway at realistic conditions, exits and entrances
- Platooning and cooperative control with limited communication (tunnel)
- Moving and static obstacles
- Construction site situation
- Multi level junction



Proving Ground Modules

SMART City Zone – Separated Function Zones

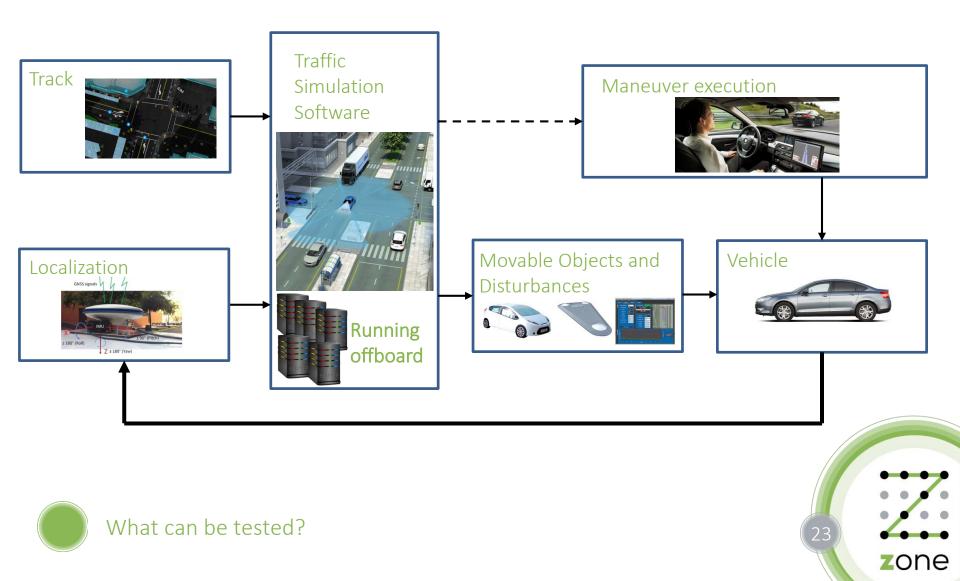
zone

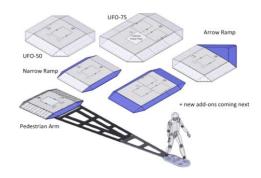
What can be tested?

Proving Ground Modules

Communication network

- 3 level approach:
 - 1st level: ITS G5 basic V2X test enviroment
 - 2nd level: V2X developer enviroment:freely configurable, open interface for application developers, full data logging infrstructure
 - 3rd level: fully customer defined test environment
- 5G cellular test network for future ITS applications
- Redundant layout for paralell customer networks





Construction of Complex Test Scenarios

Opportunities for the Scenario-in-the-Loop (SciL) Simulation

Construction of Complex Test Scenarios Dummys and UFO's


What can be tested?

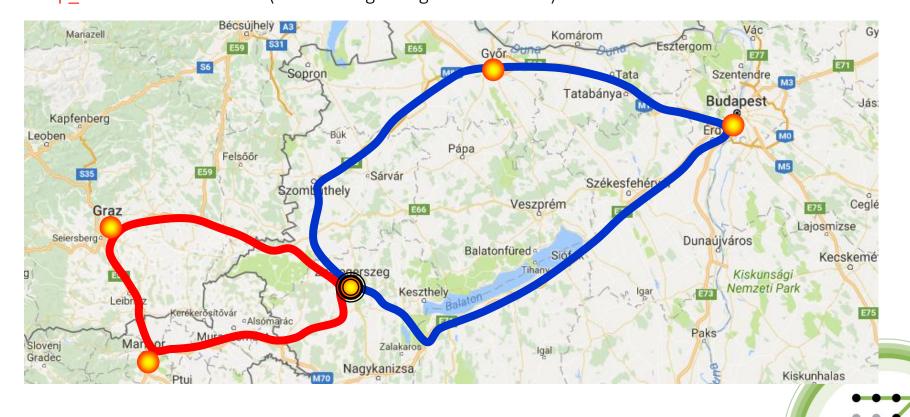
Leaving the Closed Testing Environment ...

Zalaegerszeg as Smart/Digitalized City environment for Testing


Test track modules and scenarios for controlled and repeatable tests in a safe environment

Public Road Tests

Possible test sites in Zalaegerszeg



96

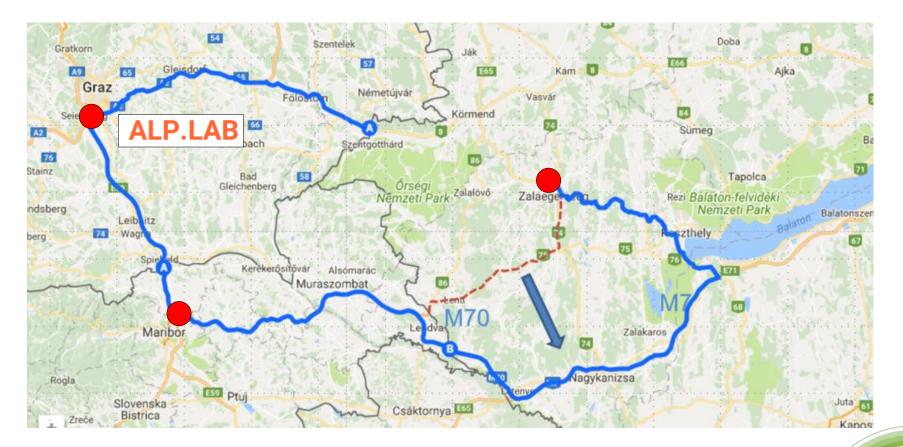
Leaving the Closed Testing Environment ...

High speed testing in real environment – "Triple loop"

Loop_1: In citiy Local roads (City Zalaegerszeg) – smart infrastruktúra Loop_2: Hungarian roads (Zalaegerszeg-Gyor-Budapest) Loop_3: International roads (Graz-Zalaegerszeg-Maribor zone)

Public Road Tests

Public roads with autonomous test focus: R76, newly built



Testing opportunities

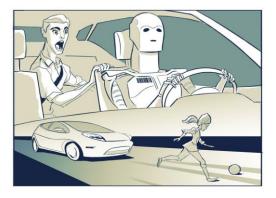
Public Road Tests

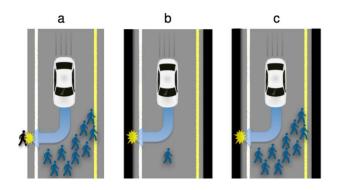
What can be tested?

Short-term potential – M7, M70, ALP.LAB (A)

zone

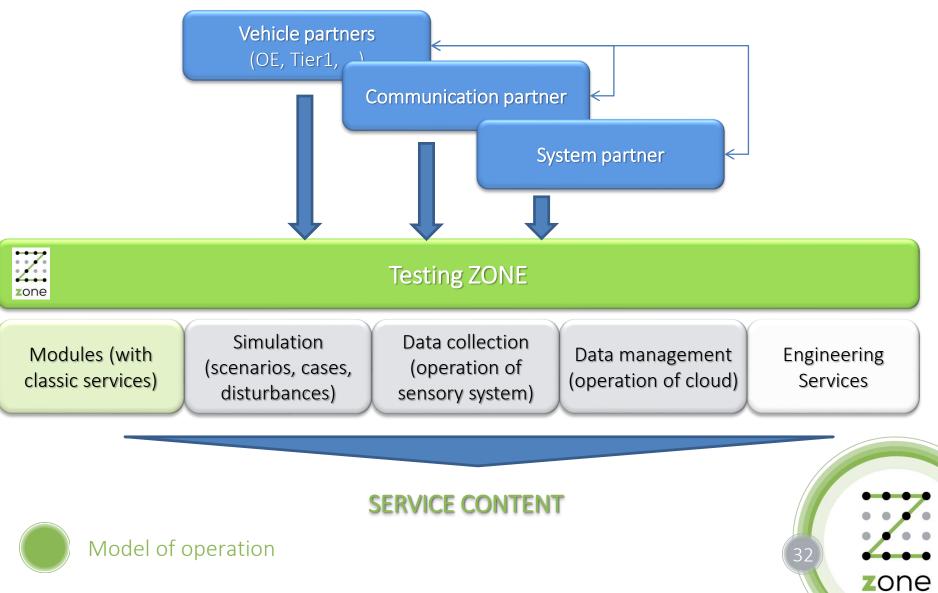
29


Model of Operation

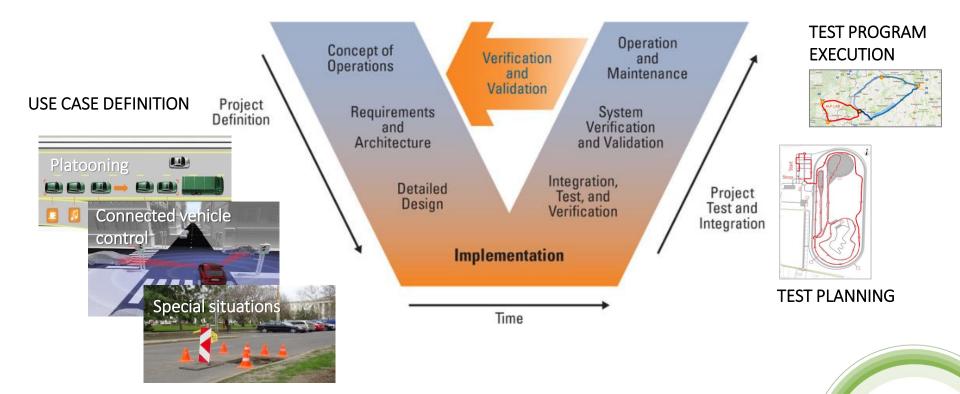

Models of Mobility will Change...

Non-technical questions will also appear

- Can we take away the enjoyment of driving from the driver?
- As different to the other co-operatively drivable vehicles (plane, boat, rail) we must be ready to manage the vehicles to handle the dangerous situations while having human participants with unperfect and very different abilities?
- What is the base of decision if we must choose from two bad options?
- Liability and legal concerns remain open for a while...
- New business models/players will appear
- New concerns will rise: how can we guarantee, that autonomous vehicles will not be put in non-proper use, etc.


zone

Number of test/use cases can exponentially increase



Business & Operation Model

Operation models will change

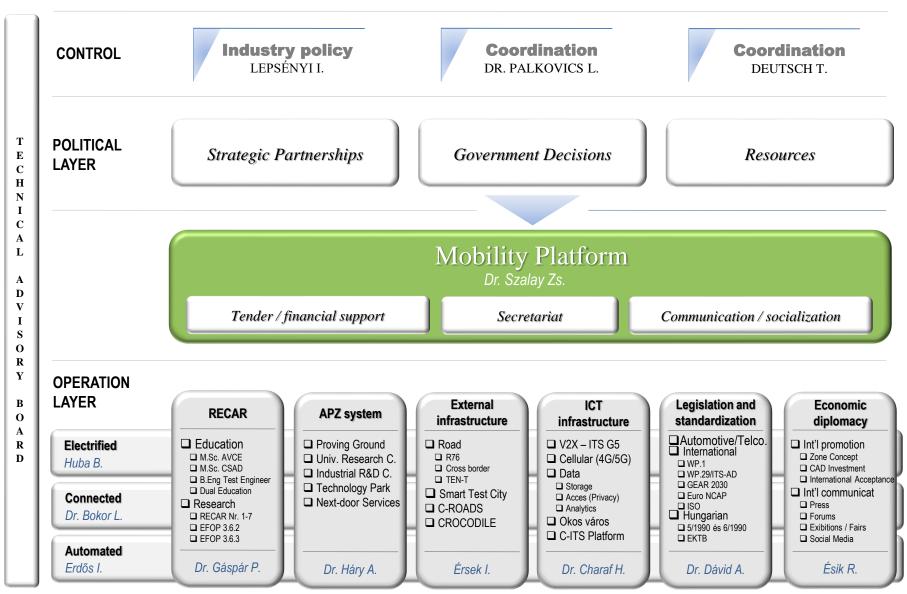
Participation of the Testing Zone in the "V-Model" Services planned

33

Types of Services and Providers

Flexible business model – not defined yet, open for proposals

	Property developer	Technological operator	Business organizer					
Classics	Logistics, safety and security, storage, special module operation (e.g. watering), offices and workshops, basic IT and communication, repair, authorities, event organization, hotel, etc.							
Simulation	pedestrians, etc.), simu	providing traffic simulation s ulation of different kind of di ual, etc.), access to full vehic	sturbances (rain, EMD,					
Data collection	Installed sensor system for test data collection, special data services (e.g. drone or other robot based data aqusiton), offering own data collection system installation opportunities.							
Data management	Data center with different service opportunities (simulation, computer cluster), cloud at the test track							
Research and Engineering Services	Depending on the demand and the capabilities of universities and other research partners							


Actual Partner Overview

Letter of Intent (LoI) $\mathbf{T} \cdot \cdot \mathbf{Systems}$ Memorandum of Understanding (MoU) Memorandum of Understanding (MoU) WG BOSCH **(K)** KNORR-BREMSE Continental 🕉 AVL 🗞 V evopro (**Z**È ELMŰ • ÉMÁSZ Energiakereskedő Kft. Non-Disclosure Agreement (NDA) **MAGNA** ROBORACE ASTON MARTIN 0 00 vodafone Αυδι apollo KREISEL 🔆 Non-Disclosure Agreement (NDA) WG kapsch >>> NOKIA RWE commsignia swarcos SIEMENS HUAWEI Indication of Interest... DELPHI MICHELIN 311 955 ٢ **.** Autoliv Mercedes-Benz Volvo Trucks *DENSO* Sheer Driving Pleasure VOLVO rreh Valeo flex Volvo Cars hamics MERCK ► ANALOG A MAGNA 0 COMBITECH Microsoft SCANIA G Swiss Re Magna Electronics (-)ebasto LEM 🐼 LINAMAR **EDAG** IVECO Atos BearingPoint. (infineon **MAHLE** ERICSSON 🗲 Need follow-up... FCA WABCO VINÇOTTE GROUPE BYD Ford DAF ΤΟΥΟΤΑ RENAULT SUZUKI 5 HOLITECH SAMSUNG MAN VEDECOM **UTAC CERAM** Model of operation 35 zone

Scientific and social environment

Strong Community Network

Stakeholders are identified and contacted

RECAR Education program

REsearch Center for Autonomous Road vehicles

Long term competency in electronic vehicle control

- Industrial partners (BOSCH and Knorr-Bremse)
- Academic partners (BME, ELTE, MTA SZTAKI)

Strong government support

- Higher added value compared to manufacturing
- ROI calculation at national economy level
- Special research funding programs

Dedicated BSc/BEng and MSc courses

- •Autonomous Vehicle Control Engineer MSc in English, starting in February 2018, Budapest, BME
- Computer Science for Autonomous Driving MSc in English, starting in September 2018, Budapest, ELTE
- Vehicle Test Engineer BEng in Hungarian, starting in September 2018, Zalaegerszeg

RECAR Education program

Strong scientific community for autonomous vehicle technology research

				1							2							3							4				
N	Numerical mathematics							Indus	lustrial image processing						Automotive R&D processes and quality systems														
								Vajta	László						Wahl	István													
							ELTE							BME							BME								
	2	0	1	f	4	TT	IK		1	0	v	4	Π	VIK		0	0	f	4	GH	GJT								
C	ontro	l theor	y and sy	ystem o	lynami	ics		High	perform	ance m	icroce	ontrolle	rs and in	terface	Proje	ct manag	ement	:			BME								
B	okor J	ózsef-G	áspár P	éter				Teves	sz Gábor						2	0	0	f	2	GH	GTK								
							BME									ine visior	n												
_	2	0	2	v	4	TT	KJIT		1	0	f	4	Π		Szirár	yi Tamás													
		ent sys						Huma	an factor		affic er	vironm		ELTE							BME								
D	obrov	viecki Ta	adeusz					2	0	0	f	2	GH	IK		0	2	v	4	SZT	ALRT								
								-	framew		auton					y and sec	urity i	n vehic	le indu	istry									
	3	0	0	f	4	TT	VIK		0	0	f	2	GH	IK	-	Balázs					BME								
C	ompe	insation	1 block						ization a	nd ma	pping				2	0	0	f	3	SZT	KJIT								
								Barsi	Árpád						-	n and int	egratio	on of e	mbedd	ed syste									
																k István	_				BME			Dipio	oma	thesi	s		
								2	0	2		4	SZT	EMK		1	0	v	3	SZT	VIK								
								Kiss B	nomous	robots	and v	enicles				c modelli	ng, sin	nulatio	n and d	control									
								KISS E	alint						varga	István					DME								
								2	1	0	V	4	SZT	BME	2	0	2	4	4	C7T	BME								
								2	motive e			-		VIN		motive ne	2	l.		021	KJIT								
				v					Tamás	nviron	ment	sensors				/ Zsolt	twor	cand c	omm. s	ystems									
				f				becsi	ramas						Szara	2501					BME								
	6	0	6	f	12	SZV	BME							BME	2	0	2	v	4	SZI	GJT								
v		e dynan	-			52.1	DIVIL	2	0	2	v	5	SZI			mated ve					0,1								
		h Huba					BMF		mated d		<u> </u>		02.						,										
	2	0	1	v	3	SZI			y Zsolt		,				Gáspa	ár Péter					BME								
v	_		g and va												1	0	2		3	SZI	КЛТ								
		Bálint					BME							BME	Néme	th Huba	_		, in the second s		BME								

RECAR Research Program

Defined by University and Industry, financed by the Community

Basic and advanced research in artificial intelligence

Co-operative control applications to vehicles

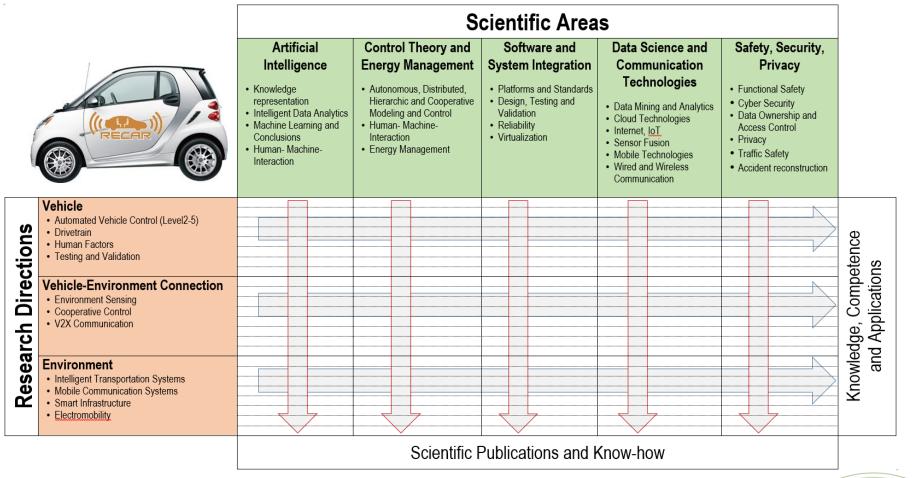
Redundant technologies (sensors, actuators, energy and communication networks, software)

Insurance/reliability: how can reliability be tested and improved?

Data acquisition/property rights: how is it possible to make data access and management transparent? Personal data - how can the protection of personal data be guaranteed?

Cyber security: how is it possible to avoid illegal use of intelligent functions?

Driverless technologies: how can test and approval processes be improved to make autonomous vehicles safe and reliable?


Accident investigations with involvement of automated vehicles

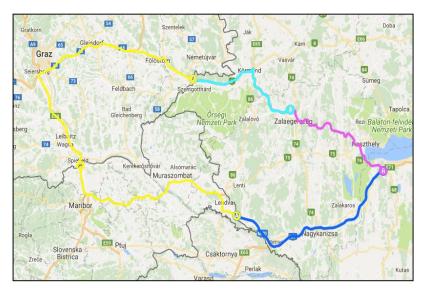
RECAR Research program

Already started

- EFOP 3.6.2 (BME, SZE, PE)
- EFOP 3.6.3 (SZE, BME, ELTE)

Scientific and Social Environment

In preparation


- H2020 D-ART
- CEF, Interreg

Public Road Tests in Hungary

Today...

- Public road tests are allowed in Hungary since 12th of April
 - 11/2017. (IV.12.) NFM decree (5/1990, 6/1990 KöHÉM)
 - Anywhere in Hungary for automotive R&D companies after registration at Ministry

... and tomorrow

- Specific routes on public road with enhanced services for automated and connected vehicle tests
- Integration to Prove Ground in Zalaegerszeg
- Smart city zone in Zalaegerszeg
- Part of cross-border cooperation between Zalaegerszeg-Graz-Maribor
 - 2018 Q2: M7 highway
 - 2019: M70
 - 2020: Zalaegerszeg smart city

zone

• 2021-2022: R76 highway

Scientific and Social Environment

Public Road Tests in Hungary

Intelligent Road Features

- Full coverage with ETSI ITS G5 station
- Full coverage with cameras
- 5th generation mobile (cellular) networks
- Meteorology stations
- High speed (>200 km/h) test section
- Varied
- Variable Message Sign, road signs
- Complex full services rest areas
- Wrong way warning system
- Heavy truck park system
- Traffic management systems
- High precision GPS (DGPS, RTK)
- High speed data connection (internet) at services points, WLAN
- 3D digital map
- C-ITS Day-1 Services

Cross-Boarder Cooperation Pillars

Level	Purpose	Party HUNGARY	Party AUSTRIA	Party SLOVENIA	Status of preparation		
Government/ State	Set-up governmental and diplomacy support to the cross-boarder initiative	Hungarian Government Ministry: NGM/KKM	Austrian Government	Slovenian Government	LoI is being agreed via diplomatic channels		
University	Establish education and R&D co-operation in fields of autonomus and electric vehicles	Budapest University of Technology & Economics	Teschnische Universitat Graz	University of Maribor	Signed		
Association	Connect professional networks to enhance opportunities in the tri-lateral co-operation	"MAGE"	Autocluster Styria	Slovenian Automotive Cluster	Beeing prepared		
Business	Utilize synergies of business programs in testing of autonomous and electric vehicles	Automotive Proving Ground Ltd.	Alp.Lab Gmbh	"Living.Lab"	Beeing prepared		
Public road authorities	Align legal environment making optimal public road test environment	Magyar Közút Zrt.	ASFINAG	DARS	Beeing prepared		

ZALAZONE - Region Zala

